Transient molecular dynamics simulations of viscosity for simple fluids.

نویسندگان

  • Jason C Thomas
  • Richard L Rowley
چکیده

A transient molecular dynamics (TMD) method has been developed for simulation of fluid viscosity. In this method a sinusoidal velocity profile is instantaneously overlaid onto equilibrated molecular velocities, and the subsequent decay of that velocity profile is observed. The viscosity is obtained by matching in a least-squares sense the analytical solution of the corresponding momentum transport boundary-value problem to the simulated decay of the initial velocity profile. The method was benchmarked by comparing results obtained from the TMD method for a Lennard-Jones fluid with those previously obtained using equilibrium molecular dynamics (EMD) simulations. Two different constitutive models were used in the macroscopic equations to relate the shear rate to the stress. Results using a Newtonian fluid model agree with EMD results at moderate densities but exhibit an increasingly positive error with increasing density at high densities. With the initial velocity profiles used in this study, simulated transient velocities displayed clear viscoelastic behavior at dimensionless densities above 0.7. However, the use of a linear viscoelastic model reproduces the simulated transient velocity behavior well and removes the high-density bias observed in the results obtained under the assumption of Newtonian behavior. The viscosity values obtained using the viscoelastic model are in excellent agreement with the EMD results over virtually the entire fluid domain. For simplicity, the Newtonian fluid model can be used at lower densities and the viscoelastic model at higher densities; the two models give equivalent results at intermediate densities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rheological Behavior of Water-Ethylene Glycol Based Graphene Oxide Nanofluids

Traditionally water-ethylene glycol mixture based nanofluids are used in cold regions as a coolant in the car radiators. In the present study, the rheological properties of water-ethylene glycol based graphene oxide nanofluid are studied using Non-Equilibrium Molecular Dynamics (NEMD) method at different temperatures, volume concentrations, and shear rates. NEMD simulations are perfor...

متن کامل

A molecular simulation study of shear and bulk viscosity and thermal conductivity of simple real fluids

Shear and bulk viscosity and thermal conductivity for argon, krypton, xenon, and methane and the binary mixtures argon+krypton and argon+methane were determined by equilibrium molecular dynamics with the Green-Kubo method. The fluids were modeled by spherical Lennard-Jones pair-potentials with parameters adjusted to experimental vapor liquid-equilibria data alone. Good agreement between the pre...

متن کامل

Prediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism.

Nonequilibrium molecular dynamics (NEMD) simulations were performed and the transient time correlation function (TTCF) method applied to calculate the shear viscosity of n-decane. Using the TTCF method we were able to calculate the viscosity at shear rate orders of magnitude lower than is possible by direct NEMD simulation alone. For the first time for a molecular fluid, we were able to simulat...

متن کامل

Poiseuille flow of molecular fluids

We examine a generalised Navier-Stokes theory applicable to fluids composed of non-spherical molecules. We compare the theoretical predictions for flow velocity and viscosity with results obtained from nonequilibrium molecular dynamics (NEMD) simulations of a fluid undergoing gravity fed flow down a rectangular channel. We study two different fluids: one composed of spherical particles and the ...

متن کامل

Effects of shear and bulk viscosity on head-on collision of localized waves in high density compact stars

Head on collision of localized waves in cold and dense hadronic matter with and without shear and bulk viscosities is investigated. Non-relativistic dynamics of propagating waves is studied using the hydrodynamics description of the system and suitable equation of state. It will be shown that the localized waves are described by solutions of the Burgers equation. Simulations show that the propa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 127 17  شماره 

صفحات  -

تاریخ انتشار 2007